Vesicle-Like Biomechanics Governs Important Aspects of Nuclear Geometry in Fission Yeast

نویسندگان

  • Gerald Lim H. W.
  • Greg Huber
  • Yoshihiro Torii
  • Aiko Hirata
  • Jonathan Miller
  • Shelley Sazer
چکیده

It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope.

In fission yeast Schizosaccharomyces pombe, the nuclear envelope remains intact throughout mitosis and undergoes a series of symmetrical morphological changes when the spindle pole bodies (SPBs), embedded in the nuclear envelope, are pushed apart by elongating spindle microtubules. These symmetrical membrane shape transformations do not correspond to the shape behavior of an analogous system ba...

متن کامل

Why cells grow and divide? General growth mechanism and how it defines cells' growth, reproduction and metabolic properties

We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these or...

متن کامل

High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification

Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like bu...

متن کامل

Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis

The fission yeast Schizosaccharomyces pombe undergoes "closed" mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies...

متن کامل

Wall mechanics and exocytosis define the shape of growth domains in fission yeast

The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and ela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007